

Strategies to Accelerate Process Development from Preclinical to Manufacturing for Gene Therapy

Dogan Ornek, Xingcheng Chen, Hassan Sakhtah, Chih-Cheng Chen, Nida S. Zubairy, Tao Xiang, Jared Kaufman, Linda Ma, Acelva Babali, Chi-Ming Yu, W. Roy Lin

Boston Institute of Biotechnology, LLC, 225 Turnpike Road, Southborough, MA 01772

Contact Information: don.ornek@bostonbib.com |+1-833-818-CDMO (2366) | www.bostonbib.com

ABSTRACT

Gene therapy is a fast-growing industry. Demand on its products such as pDNA, AAV, retrovirus, lentivirus, etc. has significantly increased during last 10 years while its production challenges remain unresolved. It is a complex process with a number of unoptimized and low yielding steps. A typical process development (PD) cycle from preclinical to late phase manufacturing (Mfg) takes 3 to 5 years. It is desired to rapidly advance to manufacturing for early clinical candidates using well established and high yielding processes. The following strategies were successfully employed by BIB to accelerate the process development activities:

(1) A platform approach for early stage process development,

(2) Efficient DoE application for process optimization and characterization,

(3) Interaction improvement between PD and Mfg to streamline scale-up, tech transfer and manufacture support.

(4) Development of a new PAT tools application to understand process design space and hence develop a control strategy.

Case studies for BIB AAV and pDNA production platforms will be covered in this nresentation

GENE THERAPY IS A COMPLEX PROCESS: PROCESS FLOW CHART FOR AAV PRODUCTION

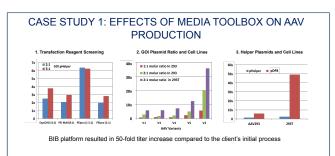
Plas Manufa		->		Viral	Manufact	uring		\rightarrow	Primary P	Recovery	\rightarrow	Down: Proce	stream essing	Analytica	l Suppor
Vial thay	v (E.coli)				Vial thaw				Harvest tr	ansfected		2-step pu	urification	Identity: S	DS-PAG
									ce	lls				MS,	PCR
Fermer	ntation		Adherent			Suspension							change by		
									Cell lysis			т	FF	Titer: qPC	
Plasmid	recovery		Cell Exp				pansion		che	m.)				A260,	A280
			T-flask, roller bottle,			SF, wave or stirred-					Formulation and		ation and		
2-step pu	rification		multilay	er tray		tank bio	reactors		Nuclease t	reatment		charact	erization	Potency:	PFU, FFU
Formu	ulation		Serial pas	saging of		Serial pas	saging of		Concentra	tion and				Purity: T	FM MS
			cells			cells			diafiltration of					HCP.	
									harvest	by TFF					
			Transfection/			Transfection/				.,				Safety:	Sterility,
			Production Multi-layer tray,			Production								Endoto:	, Myco,
						Stirred-ta	nk, wave,								
			packed bed			perfusion								Stability: p	H, Osm
														Aggri	rgate
						Analytica	l Support								
	Identity: Capsid ELISA, MS, PCR		Titer: qPCR, ddPCR		Potency: TCID50, Gene Function Test		Purity: SDS-PAGE, A260/A280, TEM, HCP.DNA		Safety: Sterility, Endotox, Myco, RCV, Adven. Agent		Stability: pH, Osmo, Aggregate, titer, potency				

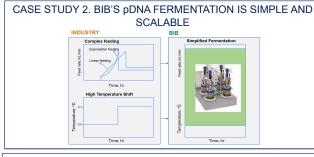
STRATEGIES TO ACCELERATE PROCESS DEVELOPMENT FROM PRECLINICAL TO MANUFACTURING

- 1. Development of platform for early-stage Process Development (PD)
- 2. Use of efficient DoE for late-stage PD
- 3. Improvement of interactions between PD and Mfg

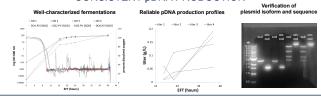
4. Application of new Process Analytical Technology (PAT)

Note: Only BIB's AAV and pDNA production platforms are covered in this presentation.


DEVELOPMENT OF PLATFORM TO ACCELERATE PROCESS DEVELOPMENT


Strategies

- 1. Advanced expression toolbox with high-throughput screening
- 2. Standard media & feed solutions
- 3. Standard seed expansion & production conditions
- 4. Single use bioreactors and high-throughput analytics



based on growth, metabolism, GC and product quality

CASE STUDY 2. BIB'S pDNA FERMENTATION PROVIDES CONSISTENT pDNA PRODUCTION

SUMMARY FOR BIB PLATFORM APPROACH FOR GENE THERAPHY

BIB successfully employed platform approach to accelerate gene therapy process development. It provides

- Timeline reduction
- Cost saving
- Robust process
- High vielding titer
- · Reproducible product titer and quality

BIB'S AAV MEDIA TOOLBOX PLATFORM FOR QUICK AND

BIB's pDNA platform includes strain development, fermentation, recovery, purification, and analytical

CASE STUDY 1: EFFECTS OF MEDIA TOOLBOX ON AAV PRODUCTION

Background:

- 1. Needed large quantity of 5 AAV variants for preclinical studies
- 2. Client had an old and low titer producing process
- 3. CaCl2 is used for their transfection process
- 4. BIB convinced sponsor to test different reagents and DNA ratio using the BIB "AAV Toolbox" to improve titer